- Joined
- 8 June 2008
- Posts
- 12,804
- Reactions
- 18,733
Was going to post this . Well I was a conspiracy theory guy 2 y ago...
You and me both.Was going to post this . Well I was a conspiracy theory guy 2 y ago...
Naturally, the FBI, being the world's leading authority on virology, is credible .Say this a year ago and you would be labelled a conspiracy theorist.....
NOW - FBI Director Wray: "Origins of the pandemic are most likely a potential lab incident in Wuhan."
View attachment 153742
The Chinese have had lab leaks before. Purely from incompetence.
In fact I'm sure I listed this back in 2020.
It's not a conspiracy. It's happened before.
i guess we should be grateful that we came in 5th.Australia recorded relatively more “excess deaths” during the Covid-19 pandemic than Sweden, which chose not to lock down its populations, new analysis from the OECD reveals.
As the world approaches the three-year anniversary of the start of lockdowns this week, top academics say data showing Sweden’s success in keeping mortality rates down brings years of civil liberty restrictions and billions of dollars in government spending in other nations into question.
New OECD analysis comparing excess deaths in 2020 and 2021 – the two worst years of the pandemic – for 36 developed nations reveals Australia had the fifth lowest increase in excess deaths, but came in behind Sweden, which attracted global scorn for resisting closing businesses, schools and ordering citizens to stay at home.
Including excess deaths – defined as those over and above what was expected – for 2022 as well puts Australia even further behind Sweden with an 8.2 per cent increase over the three-year period compared with Sweden’s 3.1 per cent.
Stefano Scarpetta, the director of employment, labour and social affairs at the OECD, said: “If you control for population growth (higher in Australia), Australia’s excess deaths rate over the three-year period as a whole was 2.1 per cent and in Sweden it was -0.6 per cent, that is no excess mortality. The reason why we use excess mortality (instead of Covid-19 deaths) is because in practice counting the number of deaths because of Covid is very difficult.”
Dr Scarpetta said there were variations in classification and testing across countries, and it was difficult to determine whether elderly victims had died with or from Covid-19.
Unfortunately, in the spirit of keeping the public informed, the TGA have given no reason as to why it is no longer approved.Approval for use in Australia
From Monday 20 March 2023 Vaxzevria (AstraZeneca) is no longer available as an approved COVID-19 vaccine. The information on this page is for those that have previously received a primary course and/or booster dose of AstraZeneca.
AstraZeneca was approved for use as a primary course and booster dose in people aged 18 years and over.
The TGA provisionally approved it for use in Australia as a primary course on 15 February 2021.
The TGA provisionally approved for use in Australia as a booster on 8 February 2022.
Pfizer, Moderna, or Novavax COVID-19 vaccines were preferred over AstraZeneca for people aged under 60 years. This was based on the higher risk and observed severity of a rare side effect called thrombosis with thrombocytopenia (TTS) after receiving AstraZeneca in people aged under 60 years compared with people aged 60 years or older.
Always worry about these simulation studies, very different from real world testing.The COVID-19 recommendations hydroxychloroquine, ivermectin, and now artemisinin all have one thing in common: They are antimalarial drugs or have such properties.
Yet studies suggest that this may not be a mere coincidence; malaria and COVID-19 may be more similar than people may realize.
From the outset, malaria and COVID-19 are very distinct diseases.
Malaria is a parasitic disease. An infection starts when an individual is bitten by a mosquito carrying a parasite from the Plasmodium genus. Upon infection, the parasite first goes to the liver and multiplies in liver cells. Then it migrates to the bloodstream, invades and proliferates in red blood cells, and causes these cells to expand and burst.
Common malaria symptoms such as fever, chills, and sweating occur during the blood-stage infection. Complications include anemia, and on rare occasions, cerebral malaria, liver failure, fluid buildup in the lungs, and acute respiratory distress syndrome.
COVID-19, on the other hand, is a viral disease. Infection occurs primarily through the inhalation of contaminated droplets. The virus invades the body through the nasal cavities, entering the upper and then lower respiratory tracts.
Inflammation of the lungs ensues as the body’s immune cells fight off the infection. The person’s oxygen levels start dropping as inflammation worsens in the advent of a cytokine storm, and the lungs become damaged. Some of the virus can also go into the bloodstream and invade other organs, causing systemic inflammation and damage.
Several Commonalities
While one mainly affects blood cells and the other primarily affects the lungs, both diseases are characterized by a strong inflammatory response early in the infection, according to a 2022 paper in Frontiers in Immunology.
Symptoms-wise, both infections from malaria and COVID-19 can lead to fever, fatigue, shortness of breath, diarrhea, and muscle pain.
If inflammation is prolonged, the body will experience a significant increase in cytokines, and individuals can become severely injured or even die.
The two diseases are also similar in that they both sequester iron, use the same receptors in their pathogenesis, and even share similar structures in their proteins.
Iron Storage
Both the Plasmodium parasite and the SARS-CoV-2 virus require iron to proliferate. Therefore, both the parasite and the virus need to store iron inside the ferritin protein within infected cells. High or increased levels of ferritin are therefore an indication of severe disease and inflammation.
Drugs that are capable of targeting iron storage or preventing proliferation may therefore be successful in treating both malaria and COVID-19.
Similar Receptors
The angiotensin-converting enzyme 2 (ACE-2) receptor is involved in both malaria and COVID-19 infections.
In COVID-19, the virus binds to ACE-2 to invade cells. ACE-2 is ubiquitous within the human body, present within at the very least:
Organs that have a high number of ACE-2 receptors are therefore at a higher risk of COVID-19 infection.
- Lungs
- Blood vessels
- Muscles
- The gut
- Nerves
- Stomach
- Heart
- Kidneys
- Pancreas
- Testes
- Uterus
The significance of ACE-2 in malaria is uncertain. However, one study, as well as the one published in Frontiers in Immunology, showed that people who have their ACE-2 receptors reduced due to genetic predispositions are more resistant to malaria.
According to the Frontiers in Immunology study, malaria parasites use the CD147 receptors on red blood cells to gain entry into the cell. The COVID-19 virus also uses CD147 in the absence of ACE-2 receptors. CD147 has also been linked to the formation of blood clots in COVID-19 infections.
Therapeutics that can target CD147 and ACE-2 may be successful in treating both malaria and COVID-19.
Similar Protein Structures
Additionally, both pathogens share a degree of overlap in their protein structures. The COVID-19 surface N protein has at least 40 percent structural similarity with important malarial proteins in charge of transport, attachment, and invasion.
This means that drugs that can target malarial proteins may also be able to target SARS-CoV-2 viral proteins.
Antimalarial Drugs Used in COVID-19
Early in the pandemic, many studies recommended antimalarial and anti-parasitic drugs such as hydroxychloroquine, chloroquine, ivermectin, and artemisinin as potential treatment options for COVID-19. These recommendations, however, soon received backlash, with one reason being that malaria and COVID-19 seem to be very different diseases.
But many doctors and studies found these therapeutics helpful in treating acute COVID-19. Professor Jose Luis Abreu, whose specialty is in plant science at The State University of Nuevo León, used the proposition of “parallelism between malaria and COVID-19” as an explanation for why antimalarial drugs such as ivermectin, artemisinin, and hydroxychloroquine may be applied to COVID-19 in his protocol.
Block COVID-19 Receptors and Proteins
In simulation studies, ivermectin, hydroxychloroquine, and artemisinin can bind to SARS-CoV-2 N proteins, which have structural similarities with malaria proteins. In treating malaria, hydroxychloroquine and artemisinin have been shown to block malarial proteins from replicating and proliferating.
MickAll three drugs can also bind to CD147 and ACE-2 receptors, as previously reported by The Epoch Times. These drugs can also bind to COVID-19 spike proteins directly to prevent viral attachment to cell receptors and also prevent viral proliferation by blocking proteins that take part in viral replication.
Hello and welcome to Aussie Stock Forums!
To gain full access you must register. Registration is free and takes only a few seconds to complete.
Already a member? Log in here.